756 research outputs found

    Polymeric Separation Media: Binding of a§ unsaturated Carbonyl Compounds to Insoluble Resins through Michael Additions or Chelation of Derivatives

    Get PDF
    This is the publisher's version, also available electronically from "http://www.degruyter.com"

    A direct route to cyclic organic nanostructures via ring-expansion metathesis polymerization of a dendronized macromonomer

    Get PDF
    Cyclic organic nanostructures were prepared via ring-expansion metathesis polymerization of a dendronized norbornene macromonomer. The strategy provides a direct, efficient route to nanoscale rings in a single operation. AFM imaging confirmed toroidal features having diameters of ca. 35−40 nm

    Deformations of the Tracy-Widom distribution

    Full text link
    In random matrix theory (RMT), the Tracy-Widom (TW) distribution describes the behavior of the largest eigenvalue. We consider here two models in which TW undergoes transformations. In the first one disorder is introduced in the Gaussian ensembles by superimposing an external source of randomness. A competition between TW and a normal (Gaussian) distribution results, depending on the spreading of the disorder. The second model consists in removing at random a fraction of (correlated) eigenvalues of a random matrix. The usual formalism of Fredholm determinants extends naturally. A continuous transition from TW to the Weilbull distribution, characteristc of extreme values of an uncorrelated sequence, is obtained.Comment: 9 pages, 1 figur

    The Largest Cluster in Subcritical Percolation

    Full text link
    The statistical behavior of the size (or mass) of the largest cluster in subcritical percolation on a finite lattice of size NN is investigated (below the upper critical dimension, presumably dc=6d_c=6). It is argued that as NN \to \infty the cumulative distribution function converges to the Fisher-Tippett (or Gumbel) distribution eeze^{-e^{-z}} in a certain weak sense (when suitably normalized). The mean grows like sξlogNs_\xi^* \log N, where sξ(p)s_\xi^*(p) is a ``crossover size''. The standard deviation is bounded near sξπ/6s_\xi^* \pi/\sqrt{6} with persistent fluctuations due to discreteness. These predictions are verified by Monte Carlo simulations on d=2d=2 square lattices of up to 30 million sites, which also reveal finite-size scaling. The results are explained in terms of a flow in the space of probability distributions as NN \to \infty. The subcritical segment of the physical manifold (0<p<pc0 < p < p_c) approaches a line of limit cycles where the flow is approximately described by a ``renormalization group'' from the classical theory of extreme order statistics.Comment: 16 pages, 5 figs, expanded version to appear in Phys Rev

    Extreme value distributions and Renormalization Group

    Get PDF
    In the classical theorems of extreme value theory the limits of suitably rescaled maxima of sequences of independent, identically distributed random variables are studied. So far, only affine rescalings have been considered. We show, however, that more general rescalings are natural and lead to new limit distributions, apart from the Gumbel, Weibull, and Fr\'echet families. The problem is approached using the language of Renormalization Group transformations in the space of probability densities. The limit distributions are fixed points of the transformation and the study of the differential around them allows a local analysis of the domains of attraction and the computation of finite-size corrections.Comment: 16 pages, 5 figures. Final versio

    Using Extreme Value Theory for Determining the Probability of Carrington-Like Solar Flares

    Get PDF
    Space weather events can negatively affect satellites, the electricity grid, satellite navigation systems and human health. As a consequence, extreme space weather has been added to the UK and other national risk registers. By their very nature, extreme space weather events occur rarely and, therefore, statistical methods are required to determine the probability of their occurrence. Space weather events can be characterised by a number of natural phenomena such as X-ray (solar) flares, solar energetic particle (SEP) fluxes, coronal mass ejections and various geophysical indices (Dst, Kp, F10.7). In this paper extreme value theory (EVT) is used to investigate the probability of extreme solar flares. Previous work has assumed that the distribution of solar flares follows a power law. However such an approach can lead to a poor estimation of the return times of such events due to uncertainties in the tails of the probability distribution function. Using EVT and GOES X-ray flux data it is shown that the expected 150-year return level is approximately an X60 flare whilst a Carrington-like flare is a one in a 100-year event. It is also shown that the EVT results are consistent with flare data from the Kepler space telescope mission.Comment: 13 pages, 4 figures; updated content following reviewer feedbac

    Ordered spectral statistics in 1D disordered supersymmetric quantum mechanics and Sinai diffusion with dilute absorbers

    Full text link
    Some results on the ordered statistics of eigenvalues for one-dimensional random Schr\"odinger Hamiltonians are reviewed. In the case of supersymmetric quantum mechanics with disorder, the existence of low energy delocalized states induces eigenvalue correlations and makes the ordered statistics problem nontrivial. The resulting distributions are used to analyze the problem of classical diffusion in a random force field (Sinai problem) in the presence of weakly concentrated absorbers. It is shown that the slowly decaying averaged return probability of the Sinai problem, \mean{P(x,t|x,0)}\sim \ln^{-2}t, is converted into a power law decay, \mean{P(x,t|x,0)}\sim t^{-\sqrt{2\rho/g}}, where gg is the strength of the random force field and ρ\rho the density of absorbers.Comment: 10 pages ; LaTeX ; 4 pdf figures ; Proceedings of the meeting "Fundations and Applications of non-equilibrium statistical mechanics", Nordita, Stockholm, october 2011 ; v2: appendix added ; v3: figure 2.left adde

    Assessment of multireference approaches to explicitly correlated full configuration interaction quantum Monte Carlo.

    Get PDF
    The Full Configuration Interaction Quantum Monte Carlo (FCIQMC) method has proved able to provide near-exact solutions to the electronic Schrödinger equation within a finite orbital basis set, without relying on an expansion about a reference state. However, a drawback to the approach is that being based on an expansion of Slater determinants, the FCIQMC method suffers from a basis set incompleteness error that decays very slowly with the size of the employed single particle basis. The FCIQMC results obtained in a small basis set can be improved significantly with explicitly correlated techniques. Here, we present a study that assesses and compares two contrasting "universal" explicitly correlated approaches that fit into the FCIQMC framework: the [2]R12 method of Kong and Valeev [J. Chem. Phys. 135, 214105 (2011)] and the explicitly correlated canonical transcorrelation approach of Yanai and Shiozaki [J. Chem. Phys. 136, 084107 (2012)]. The former is an a posteriori internally contracted perturbative approach, while the latter transforms the Hamiltonian prior to the FCIQMC simulation. These comparisons are made across the 55 molecules of the G1 standard set. We found that both methods consistently reduce the basis set incompleteness, for accurate atomization energies in small basis sets, reducing the error from 28 mEh to 3-4 mEh. While many of the conclusions hold in general for any combination of multireference approaches with these methodologies, we also consider FCIQMC-specific advantages of each approach.Royal Societ

    Reversible Photomechanical Switching of Individual Engineered Molecules at a Surface

    Full text link
    We have observed reversible light-induced mechanical switching for a single organic molecule bound to a metal surface. Scanning tunneling microscopy (STM) was used to image the features of an individual azobenzene molecule on Au(111) before and after reversibly cycling its mechanical structure between trans and cis states using light. Azobenzene molecules were engineered to increase their surface photomechanical activity by attaching varying numbers of tert-butyl (TB) ligands ("legs") to the azobenzene phenyl rings. STM images show that increasing the number of TB legs "lifts" the azobenzene molecules from the substrate, thereby increasing molecular photomechanical activity by decreasing molecule-surface coupling.Comment: related theoretical paper: cond-mat/061220
    corecore